Using Large Ensembles of Low-Cost Lagrangian Drifters for Tropical Cyclone Analysis & Forecasting

John Manobianco, Joseph G. Dreher, Mark L. Adams, and Jonathan L. Case
ENSCO, Inc.

21 March 2006
60th Interdepartmental Hurricane Conference
(Mobile, AL)

Outline
Concept Description
Motivation
Methodology
PRELIMINARY Results
Summary/Future Efforts
Concept Description

- **Global Environmental Micro Sensors (GEMS)** – multi-year feasibility study
- **Ensemble of super pressure, constant density balloons (Lagrangian drifters)**
- **Drastically reduce mass, size, and cost by integrating micro and eventually nanotechnology**
 - Components
 - Balloon material (12.5-\(\mu\)m MylarTM GL-AE)
 - Current (70 gm; 40 cm; beach ball)
 - Target (<1 gm; 10 cm; grapefruit)
- **Self-contained with power source for**
 - Sensing
 - Dropsonde quality micro sensors
 - T, p, RH, velocity (micro GPS)
 - Communication (Iridium-class satellites)
 - Limited signal processing/computation
Motivation

- Improve density / distribution of in situ observations especially over data sparse oceanic regions
- Significantly enhance adaptive or targeted observing campaigns
 - Research & operational missions
 - Synoptic observing capabilities spanning a broad range of time/space scales
 - Tropical cyclone reconnaissance where it is only cost effective & practical to obtain in situ, high-resolution, measurements over limited domains
Preliminary Data Impact Study

• Dynamic simulation models
 – Virtual weather scenarios - ARPS (Advanced Regional Prediction System)
 – Probe deployment & dispersion - Lagrangian particle model
 – Data assimilation (DA) - NCAR/PSU MM5 (Mesoscale Model v5)

• Hurricane Floyd case (Sep 1999)

• Simulated observations
 – GEMS probes deployed from aircraft
 • 1140 probes every 12 h
 • 1 per minute during typical recon flight pattern
 – 5-min observation frequency
 – No measurement errors or instrument failures
 – No simulated aircraft, satellite, or dropsonde data

• Value added of probe data
 – Observe/analyze 4D tropical cyclone structure
 – Initialize tropical cyclones using high resolution models
Experiment Design

ARPS 15-km
0 3 6 9 12 15 18 21 24 27 30 (forecast hour)
18Z 00Z 06Z 12Z 18Z 00Z
9 Sep 10 Sep

ARPS 3-km
0 3 6 9 12 15 18 21 24 27 30 (forecast hour)
18Z 00Z 06Z 12Z 18Z 00Z
9 Sep 10 Sep

MM5 12-km run
0 1 2 3 4 5 6 (forecast hour)
18Z 19Z 20Z 21Z 22Z 23Z 00Z
10 Sep 11 Sep

Simulated GEMS data (u, v, RH, T) assimilated using MM5 Newtonian relaxation (nudging)

Experiment Avg # obs per ingest time

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Avg # obs per ingest time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>4785</td>
</tr>
<tr>
<td>10%</td>
<td>478</td>
</tr>
<tr>
<td>1%</td>
<td>47</td>
</tr>
</tbody>
</table>
Simulated “Truth”

15-km ARPS clouds & probes
6-day loop with 1 frame every hour

3-km ARPS clouds & probes
29-h loop with 1 frame every 5 min
Simulated “Truth” (2)

- ARPS "Truth" 3 km
- GEMS Probes 3 km
DA Results

900 hPa
Velocity (m s$^{-1}$)
0000 UTC
11 Sep 1999

ARPS 3-km

MM5 12-km (all obs)

MM5 12-km (10% obs)

MM5 12-km (1% obs)
DA Results (2)

Speed (m s\(^{-1}\))
Theta (K)
0000 UTC
11 Sep 1999

ARPS 3-km

MM5 12-km (all obs)

MM5 12-km (10% obs)

MM5 12-km (1% obs)
DA Results (3)

Hurricane Floyd Mean Sea-Level Pressure

- **ARPS 3 km**
- **MM5 12 km - Full**
- **MM5 12 km - 10%**
- **MM5 12 km - 1%**

Hurricane Floyd Maximum Wind

- **ARPS 3 km**
- **MM5 12 km - Full**
- **MM5 12 km - 10%**
- **MM5 12 km - 1%**

Forecast Hour ranges from 18 to 24.
Summary & Future Efforts

• Summary
 – Low cost, low mass, ensemble of Lagrangian drifters (GEMS)
 – Map 4D tropical cyclone structure including intensity changes
 – Initialize high resolution models without bogus vortex

• Operational Issues
 – Deployment scenarios (cost, practicality, etc.)
 – Aviation hazards
 – Robustness to harsh conditions in tropical cyclones (e.g. rain out)

• Future Efforts
 – Prototype development in progress (functional device by fall 2006)
 – Expand data impact studies
 • Limitations of a single case
 • Use more advanced modeling/assimilation systems (e.g. H-WRF, 3D/4DVAR)
 • Include full data suite & assess impact relative to track/intensity forecasts over broader range of space/time scales