Reducing Cost, Size and Mass of MPAR Radar Arrays
Cobham Overview
Summary

Enterprise Started in 1934 by Sir Alan Cobham
- An innovative aviation pioneer – Aug 1926 – England to Australia & back; refueling - 1933
- 1939 – Refueling aircraft from aerial tankers
- RAF & US Army Air Force began refueling trials in the last year of WWII

Four Divisions Operating on Five Continents with 12,000 Employees Worldwide
- Cobham Defense Systems (CDS)
- Cobham Avionics & Surveillance
- Cobham Mission Systems
- Cobham Aviation Services

Major Operations
- Defense Electronic Systems
- Antennas
- Avionics and Surveillance
- Communications
- Homeland Security

Alan Cobham relied on meteorological office reports in the 1920s and 30s
Cobham Overview

Cobham Sensor Systems

<table>
<thead>
<tr>
<th>Technologies/Products/Services</th>
<th>Facts</th>
<th>Business Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Active microwave</td>
<td>• Facilities in the USA, Mexico, Sweden</td>
<td>• Sensor Electronics</td>
</tr>
<tr>
<td>• Passive microwave</td>
<td>• President: Steve Schaefer</td>
<td>• Microwave Electronics</td>
</tr>
<tr>
<td>• Electronic warfare antennas</td>
<td></td>
<td>• Microwave Components</td>
</tr>
<tr>
<td>• Communication, navigation & identification (CNI) antennas</td>
<td></td>
<td>• Advanced Programs and Technology</td>
</tr>
<tr>
<td>• Radar antennas – fire control radar, weather radar, synthetic aperture radar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Radomes and advanced composites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• High-precision positioners</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Markets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Tactical Radar & Communication</td>
<td></td>
</tr>
<tr>
<td>• Satellite Communication</td>
<td></td>
</tr>
<tr>
<td>• Tactical Missiles</td>
<td></td>
</tr>
<tr>
<td>• Electronic Warfare</td>
<td></td>
</tr>
<tr>
<td>• Missile Defence</td>
<td></td>
</tr>
<tr>
<td>• Space Systems</td>
<td></td>
</tr>
</tbody>
</table>

Includes the full year effect of 2008 acquisitions
Product Integration Strategy

Strong component foundation enables the development of integrated products resulting in higher performance, smaller size, and lower cost.
Radar architecture has four major subsystems

- **Phased Array Antenna Subsystem**
- **Digital Receiver/Exciter (DREX)**
- **Beam Former Wave Form Generator**
- **Processor Subsystem**

Radar Subsystems Roadmap

- **2004**
 - L, S, X, and Ku band T/R MMIC’s
 - T/R module packaging
 - Array architecture developed

- **2009**
 - 256 element arrays
 - 1024 element array
 - X-band
 - Full DREX 32 channel subsystem delivered
 - S-Band

- **2013**
 - Complete Panel building blocks for S, X, and Ku band arrays
 - Partner for platform deliveries
 - DREX building blocks at S and X band
 - Low cost architectures
What can Cobham Contribute to MPAR?

• Architecture/implementation cost trade off studies
 - Cobham is not wedded to any particular technology; we use all types of technology
 • Technology choices based on best solution
 - We use multiple foundries for MMIC development, both within Cobham and outside
 - We manufacture hardware so we have to accurately estimate costs to survive in a competitive environment. 95% of the work (including development) we do is firm fixed price.

• Demonstration hardware
 - We have similar hardware that can be adapted to MPAR needs
 • X-band phased array antenna subsystem
 • Many highly integrated custom MMICs developed for L, S, C, X and Ku-band radars, including specifically for MPAR
 • S-band Digital Receiver Exciter (DREX)
 • Large number of components developed for other radar programs
What can Cobham Contribute to MPAR?

• **Strong technology in core RADAR areas**
 - MSAG and HVMSAG are Cobham advantages
 - Smallest MMICs in industry, results in lower costs
 - Lowest thermal impedance MMICs -- simplifies packaging and cooling
 - Capability includes MMIC, digital, antenna, and T/R functions

• **IR&D Support**
 - We have internal IR&D programs for S-band and X-band development that need input from MPAR
Requirements for a LOW COST Phased Array Supplier

- Highly Integrated Custom MMICs
 - MMICs 20% or higher percentage cost of the array
 - Innovative designs required to achieve element spacing. Older approaches with “brick” T/R modules will not meet cost goals
 - Highly efficient designs required to achieve thermal performance and reliability

- Low Cost Packaging Approaches
- Innovative Antenna Technologies – Dual Polarity designs
- High Volume Manufacturing capability
 - Automation for assembly and test

- Open Architecture
 - Willingness to work with open and non-proprietary interfaces
 - Allows technology insertion, competition; not hostage to system supplier

- Scalable Design
 - Allows arrays of any number of panels to be made
X-band Phased Array Antenna Subsystem Design

Tile Design

- Scalable
- 256 element building block
- Highly integrated custom MMICs for optimum performance, layout, & lowest cost

- Horizontal layout of T/R electronics instead of vertical “brick” T/R Modules
 - Allows use of single, low cost PCB (printed circuit board) for 16 elements ASA (analog subarray) building block
 - Low cost protective coatings over MMICs instead of hermetic packaging
 - Embedded passives in PCB
 - Lower cost than T/R module approach
 - Radiator assembly with various polarity
 - Air cooled

- Integrated FPGA controller and DC-DC converter
X-band Phased Array Antenna (IR&D) Subsystem Key Specification Summary

- **DC Voltage**: 28 V – to 300 V option
- **DC Power Consumption**: < 1 kW
- **Tile Size**: 256 elements
- **Tile Area**: < 100 sq. in.
- **Depth**: 4.0”
- **Weight**: ~3.5 kg (includes all DC converters)
- **Transmit Polarization**: Circular or linear options
- **Receive Polarization**: Circular or linear options
- **Thermal**: Air Cooled
- **Interface**: Open Architecture
- **Calibration**: Ability to calibrate every element individually
Transition to S-Band

- Leverage X-band strength and benefits of the larger array spacing at S-band into a low cost building block
 - Scalable
 - Dual Polarity
 - Integrated MMIC chipset
- Air cooling to 50 W per element; Liquid cooling to 200 W + (10% duty cycle)
- Integrated Calibration approach
- Integrated Beam steering controller
- Automated surface mount assembly maintaining thermal performance

Scalable S-band Array Concept
Cost Model - Inclusive of All Array Functionality (not just T/R module cost)

- X-band model shown; S-band: lower cost packaging & lower cost MMIC processes
- Quantity required to reduce per element cost
- Must leverage building blocks across multiple programs
 - Must be considered when optimizing for one frequency band or requirement
- Innovative MMIC technologies, packaging, thermal control necessary
 - Design into 6” or larger wafers for high quantity parts
 - Air cooling built into structure

<table>
<thead>
<tr>
<th>Elements per Year</th>
<th>Cost per Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000’s</td>
<td>$200</td>
</tr>
<tr>
<td>10,000’s</td>
<td>$400</td>
</tr>
<tr>
<td>100,000’s</td>
<td>$800</td>
</tr>
<tr>
<td>1,000,000’s</td>
<td>$1600</td>
</tr>
</tbody>
</table>

Approximate Cost Breakdown (10K element qty’s)

- MMICs, 30%
- Antenna Elements, 7%
- Balance Material, 20%
- Assembly, 25%
- Test, 18%
Technology Tradeoffs

Device Type:
- GaAs - PHEMT - MSAG - HVMSAG - HBT - GaN - SiC - SiGe - LDMOS - CMOS
- Cobham has experience with all of the above

Specification Trades:
- Power per element -- Noise figure per element
- PAG/T is a one figure of merit for a radar array: Power * Antenna Area * antenna Gain / noise Temperature. PAG/T is proportional to the cube of the number of elements
- Polarization choices: dual linear only vs. dual linear plus dual circular, receive simultaneous polarization, etc.

Example of Trades:
- SiGe amplifiers are less expensive than GaAs but higher noise figure. Higher noise figure means more elements are required to make the same PAG/T. Conversely, pHEMT is more expensive than MESFET but lower noise figure. The trade has to be done at the system level.
- Higher power amplifiers = fewer number of elements; total DC power increases & cost per PA MMIC increases (PA is the most expensive MMIC).
HVMSAG MMICs COST LESS Today

<table>
<thead>
<tr>
<th>Material Cost Comparison</th>
<th>HVMSAG</th>
<th>GaN on SiC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Density (W/mm; 28 V)</td>
<td>1.8</td>
<td>6</td>
</tr>
<tr>
<td>Power Density Ratio'ed to HVMSAG</td>
<td>1</td>
<td>3.3</td>
</tr>
<tr>
<td>Starting Material Cost ($)</td>
<td>700</td>
<td>7000</td>
</tr>
<tr>
<td>Wafer Diameter (mm)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Starting Material Cost ($ / sq. mm)</td>
<td>$0.11</td>
<td>$1.10</td>
</tr>
<tr>
<td>Cost ($ / sq. mm) Ratio'ed to HVMSAG</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Cost Ratio / Power Ratio</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

High Power L, S, and C band Radar applications
MESFET High Power Amplifier

- 50W, single stage
- 3 – 3.6 GHz
- 28V Supply
- 30-44% PAE
- 2mil GaAs

Fully on-chip matched PA

Chip Size
7500 x 5000um
MPAR Pricing Targets, MMIC Constraints

Target Price: $50k / sq. meter of aperture
- Equates to $130 / element at S-Band
- Element price includes aperture structure, cooling, radiators, radome, power conditioning, logic, beamformers and T/R modules
- T/R modules will make up 50% of this budget
 • < $60-70 / module
 • MMIC Content will be largest portion of the T/R module Cost
 • PA (power amplifier) is the most expensive function
 - HVMSAG is the most cost effective technology today for S-band power MMICs in the 2 - 60 W range
 - GaN technology and cost are improving for the solution

MPAR Requirements Driving Cost
- Variable Polarization: combined linear & circular capability roughly doubles the MMIC area
- Power. PA MMIC area roughly proportional to power; drives heat removal techniques. Passive matching networks require more area than transistors.
MMICs Developed for S-band

- Custom S-band MMICs developed specifically for phased array radars
- Suitable for dual polarization application as needed for MPAR
- Small die area lowers cost
- MSAG (multifunction self aligned gate) and HVMSAG (high voltage MSAG) are two Cobham specific technologies
- MSAG, HVMSAG/HEMT addresses > 80% of the Military MMIC Market
- 3X to 5X lower MMIC cost compared to GaN & SiC today
 - High efficiency, gain, linearity & reliability
 - Supports miniature, low cost, highly integrated T/R MMICs
Low Cost S-band T/R Module Approach

- PCB-Based Assembly
 - Surface Mount Construction, Air-Cooled

- Off-shore Assembly & Plastic Packaging of untested MMICs
 - IC Yields > 85%

- Integration of MMICs where it makes sense
 - Will not impact yield

- Total IC area < 60 sq mm
 - Tx Power to 5 W or higher at element output
 - High Voltage Process, HVMSAG or GaN
Reducing Cost, Size, and Mass

T/R Modules

“Brick”
L-band T/R module, early 90s;
Lincoln Lab Journal, Vol 12, No. 2, 2000

Cost, Size, & Mass Decrease

T/R MMIC, 15 sq. mm

Transition from Brick to Tile / Panel

T/R Module & MMICs

< 1 sq. inch
7 g

5x 20x 5x

1 sq. cm;
0.25 g

3x 2x 2x

T/R MMIC & ASIC in QFN
Plastic Package or LCP Package

30 sq. mm;
0.1 g

3-D IC

T/R Module

Transition from 2D Panel to 3D Panel / ICs

Reduction in size mass cost
75x 200x 50x
(comparison for similar ckt functions)

5x 5x 5x
S-Band Common Leg Circuit (CLC)

Phase shifter, attenuator, amplifiers, S-to-P converter, switches

~ 10 sq. mm
S-band Radar Single Chip T/R Element

- Single chip solution
- HVMSAG process enables integration
 - Integrated control functions with RF functions
 - Competing technologies require multi-chip solutions
- Eliminates significant packaging and assembly labor costs
- Low cost solution

![Diagram of S-band Radar Single Chip T/R Element](image)

Simple T/R Module
S-Band DREX
(Digital Receiver-Exciter)

• Distributed Radar Application
• 4 synthesizers, 32 T/R channels
• Expandable to arbitrary number of channels
• Extremely low phase noise
• *Synthesizers have uncorrelated phase noise for even lower system level phase noise*
• Translates from digital signals to RF signal & vice versa
• Very good phase stability vs. time between channels

Low Cost S-Band DREX

• RF & IF bandwidth requirements significantly simplify performance requirements
• Move from modular, hermetic design approach to fully integrated single board design
• Multiple Channels per board – target 8; integrated A/D, D/A and FPGA on board

Low cost S-band DREX Multi-channel concept
Summary

• Cobham -- has extensive phased array radar experience

• Legacy and IR&D programs are directly applicable to MPAR requirements

• Is positioned to make cost effective phased array radar hardware

• Has made significant investments in phased array radar technology

• Cobham requests MPAR inputs to influence its IR&D projects

• What can we do for you?

Chris Ison
Vice President of Business Development
Cobham Sensor Systems
Microwave Electronics
858-505-3110
Chris.Ison@cobham.com

Denny Morgan
Senior Vice President, Chief Engineer
Cobham Sensor Systems
Microwave Electronics
858-505-3131
Denny.Morgan@cobham.com

Greg Pshsnychniak
Business Development Manager
Cobham Sensor Systems
Microwave Electronics
858-505-3326
Gregory.Pshsnychniak@cobham.com

Steve Nelson
Vice President, MMIC Design
Cobham Sensor Systems
Advanced Programs and Technology
972-437-1049 x 234
Steve.Nelson@cobham.com