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Presentation Notes

The Second Wind Forecast Project (or WFIP2) is a large program with a lot of participants, and we’d like to start by acknowledging the many collaborators working on the project, most of whom are listed here. 


WEFIP2 is funded by U.S. Department of Energy and NOAA
to improve forecasting for wind-energy

GOALS:

Improve our understanding of atmospheric flows and processes that occur

in complex terrain and impact wind forecasts at hub heights.

Instrument the Columbia River Basin study area and carry out a 12-18
month field campaign (beginning October 1, 2015).

Develop physical parameterizations in WRF-ARW (with a focus on RAP &

HRRR) to better represent physical processes and increase accuracy of
wind forecasts in the 0-15 hour range, as well as day-ahead forecasts.

Develop decision support tools, e.g., probabilistic forecast information,
uncertainty quantification and forecast reliability for system operations.

Transfer model improvements to NOAA/National Weather Service, other
international forecast centers, and private industry.
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Presentation Notes
The study area is in what we call the Pacific Northwest, in Washington and Oregon States.  The dominant geographic features are the Pacific Ocean, the Cascade Mountain Range generally 1500-2500m above sea level, and then the Columbia River that drains a large part of the western portion of Canada and the US, with the CR cutting through the Cascades in a fairly narrow region called the CR Gorge.  The large and relatively low elevation Columbia River Basin home to a large number of wind plants. 
Two particular features that can influence the flow are the volcanic peaks of Mt. Adams and Mt. Hood, reaching 3500m ASL, which flank both sides of the CR Gorge. 



Columbia River Gorge
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Here is a photo of the Columbia River Gorge, looking from the Portland side to the east.



Columbia River Basin
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After one exits the Gorge into the Columbia Rive Basin the topography becomes mostly gently sloping, and there are a tremendous number of wind turbines.
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Although the Columbia River Basin is in generally gently rolling terrain, there are many areas with wind plants that have quite steep terrain.



Key Phenomena in WFIP2 Region
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Important meteorological phenomemna in the area that affect wind energy production and that are very challenging to forecast are:
Timing and intensity of frontal passages.  The orange curve is the forecast power aggregated over individual wind plants in the  WFIP2 region, the black curve the observed power, and the weather map on the left corresponds to the time of the vertical red line in the forecast.  
2) Orographic lee waves and mountain wakes in the lee of Mt. Adams and Mt. Hood are another forecast problem both clearly shown by the satellite image on the left.
3) Convective outflows, common to many mid-latidude locations.
4) And gap flow through the CR Gorge driven by the thermal contrast between the coastal and interior areas.

Ever present in all of these situations is the build up and erosion of stable layers, particularly in the CR Basin.  The development of these layers plays an important role in the timing of when the meteorological phenomena actually influence a wind plant’s energy production.

Although this area is a wonderful region for a complex terrain study because it contains so many different types of terrain and meteorlogy affected by the terrain, you will recognize that most of these phenomena can occur in any country with complex terrain, and certainly many places in Europe: Norway and Alps, Pyrennes, Alpininees with frontal passages and lee waves, thermally driven gap flows in Portugal and Spain, convective outflows interacting with topography in just about any country in Europe (well OK, Denmark is sort of a special case), but Demark is always special in some way.


Wind power in winter from frontal passages
Wind power in summer from thermal contrast between hot interior and cooler coastal region
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Partners in WFIP2 include 4 DOE Labs (Argonne, LL, NREL, and PNNL).  NOAA laboratories include ESRL, ARL, as well as the NWS.   DOE and NOAA have also funded a private sector team led by Vaisala, including many organizations shown below, including NCAR and the Bonnieville Power Administration, which balances the grid in this area. 

The photograph shows one of the volcanic peaks, Mt. Hood,~80km ??? upstream of a large wind plant.  
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A significant amount and variety of meteorological observing instrumentation is being deployed for WFIP2, including WPR’s, sodars, profiling and scanning lidars, microwave radiometers, microbarographs, scanning radars, sonic anemometers, and surface energy balance systems.  The instrumentation is being deployed in a telescoping  multiscale approach, with a larger scale array of WPR’s about 500km across, with a smaller array of most of the remaining instrumentation in a 200 km trapezoidal region, a smaller yet triangle of profilers, and then finally nested inside is a 2 km area instrumented with many sonic anemometers mounted on 10-20m towers with one 80m tower and a scanning lidar system. 
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Next we break out the instruments by individual type,  to better see their location and orientation relative to the topography. 
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The sodars have both an along river (E-W) and cross-river (N-S) orientation. 
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Microwave Radiometers
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Microwave radiometers also allow one to get both east-west (along river) and N-S gradients of temperature. 
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Microbarograph array is mostly oriented along the Columbia River. 
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Profiling lidars


Presenter
Presentation Notes
As are the profiling lidars. 
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Scanning lidars
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The scanning lidars range in elevation from 100m to 700m ASL.  The larger circle denotes a Lockheed Martin Wind Tracer lidar, which can scan out to ~10 km range. 
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The primary models that will be used for WFIP2 are the NOAA hourly updated models run operationally by the NWS, including the Rapid Refresh or RAP, run at 13 km resolution, and whose domain is being expanded shown in the white box, and the 3 km High Resolution Rapid Refresh or HRRR, shown in green.  Also, just for WFIP2, an experimental 750m nest of the HRRR will be run shown in the small green box.  Unlike the RAP and HRRR which are hourly updated, the 750m nest will only be run every 3 hours.



Model Development

e Scale-aware boundary layer
physics - transition from 1D to 3D
(Bao, 2014)

e 3D surface stress coupled to 3D
turbulence (Epifanio, 2007)

e Scale-aware cloud mass-flux
coupled to PBL scheme

e Scale-aware subgrid-scale clouds

e Improved numerics

e |IBM - Immersed Boundary Method
(K. Lundquist, 2012)
Note: New model physics not yet implemented
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The main focus of WFIP2 is on improving model physics and numerics.  One of the issues in complex terrain is that one would like to use very high resolution models to resolve the terrain.  However, most physical parameterization schemes have been developed for horizontal grid spacings that do not explicitly resolve the turbulence boundary layer flow, say typically greater than 1 or 2 km.  At scales less than this but larger than LES grid spacings one enters what John Wyngaard called the Terra Incognita, where present NWP physical parameterizations can double count the effect of the turbulence by both parameterizing it and explicitly resolving at least part of the turbulent motions. 

One approach is to develop scale-aware physical parameterizations, that change in behavior based on the grid spacing of the model.  We are working on several of these scale-aware parameterizations, including boundary layer physics, boundary layer clouds, and free-atmosphere clouds.  We are also considering a 3D surface stress parameterizations by Epifanio, and improved numerics including the Immersed Boundary Method for more accurate calculation of the surface pressure gradient in steep terrain.  I note that so far these new schemes are still under development, and have not yet been implemented in the models, but we expect them to be implemented within the next year
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Here we show some very early results comparing dissipation rates measured with a 915 MHz wind profiler with those from the HRRR 750m model nest.  Model dissipation rates that drop to the model’s small background constant value are shown as white.  The model dissipation rates increase above the model background value in the growing convective boundary layer.  The model is reasonable agreement with the observations on 3 May, but on May 13 tends to underpredict the dissipation rate during nighttime hours and over- predict dissipation rates during the daytime hours.  For details on the technique, please stop by the poster by Katie McCaffrey. 
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Here we have a 24h time-height cross section of winds from a 915 MHZ Radar Wind Profiler and RASS virtual temperatures in color, for a site at Condon OR, located in the Columbia River Basin, as indicated by the red arrow.  The dashed line shows ground level.  The RASS data show the presence of a strong cold pool approximately 200m deep capped by an inversion, with warmer air aloft.  Winds aloft are strong S or SW, within the cold pool they are very weak, E component.  Our key forecasting challenge is will the cold pool erode away and the strong S flow aloft work its way down to the surface, and if so, when will it happen? 
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Here we repeat the previous observations in the top left panel, and then compare it to virtual temperatures from the RAP and HRRR, as well as the NAM and NAM 5 km nest.  The 12km RAP has a hard time developing a cold pool at all, with strong S flow at the surface for almost the entire 24h forecast. The 3km HRRR does a slightly better job, although the cold pool is very weak and intermittent.  The HRRR 0.75km nest does an even better job, but the cold pool is still too weak and the simulation only runs out to 15h so we can’t see the full evolution of the pool over time.  In general, higher resolution gives a better cold pool.
On the left for comparison we show in the middle panel the 12 km NAM.  Although it is relatively coarse resolution, it does a great job of simulating the cold pool and weak easterly flow.  Also shown in bottom left is the 5km NAM Nest, which actually does a slightly worse job of  simulating the cold pool.  So getting this simulation correct is not just a matter of resolution, but other physical processes are important, likely the boundary layer turbulence scheme and the LSM.
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Presenter
Presentation Notes
Another view of this event is provided by a microwave radiometer also located an the same site, which provides temperature profiles over a deeper layer than the RASS.  Again NAM 12 does best at replicating the cold pool, strong inversion. RAP is worst while the HRRR and HRRR nest do progressively better. 
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Presentation Notes
Here we see sodar observations and and a HRRR forecast for the same event but at a slightly lower elevation where the cold pool erosion occurred at a slightly later time.  The sodar data shows just how abrupt these events can be, with the winds instantly switching from 1-2 m/s to over 10 m/s.  The HRRR model does forecast this jump in wind speed, but the jump occurs 3 hours too early and the wind speeds are too strong, up to 20 m/s instead of the observed 10 m/s. 


Model & obs evaluation web page:

http://wfip.esrl.noaa.gov/psd/programs/wfip2/

e Displays observations from almost all instruments
deployed for WFIP2

e Compares observations to model forecasts, both NWS
operational and research
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Presentation Notes
We have created a web site where you can find almost all of the WFIP2 observations in real-time. 
The web site also compares the observations to the model forecasts, and is updated every couple of minutes with the latest information available. 



- WFIP2 Summary

WFIP2 will provide a unique and powerful data set that
will help improve NWP models:

e Observe and understand flows & processes in
complex terrain
= Gap Flows.
= Thermally driven Marine Pushes.
= Mountain Wakes.
= Trapped Lee-Waves, etc.
= Cold Pool erosion

 Improve NWP model physics in complex terrain
= Scale-aware parameterizations

= |BM, surface flux parameterizations THA NKSI
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Presentation Notes
So in summary we believe that WFIP2 is going to provide a unique and powerful data set that will help improve our numerical weather prediction models both by improving our understanding of the fundamental physical processes at play, and then by transferring that knowledge into better models .  The project is just getting into full swing now and will continue for another year, and I am confident that in the near future WFIP2 team members will be able to demonstrate the impacts of these improvements.  THANKS. 
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