THE OVERALL CLASSIFICATION OF THIS BRIEFING IS UNCLASSIFIED
Ground Based
- Counterfire
- Air Surveillance
- Ground Surveillance
- Force Protection

Airborne
- SAR
- GMTI/AMTI
- Phased Arrays
- Digital Arrays
- Data Exploitation
- Advanced Signal Processing (e.g. STAP, MIMO)
- Advanced Signal Processors
- VHF to THz
Design Drivers and Constraints

Requirements
- Operational Needs flow down to System Specifications

Platform or Mobility/Transportability
- Size, Weight and Power (SWaP)

Reliability/Maintainability
- Modularity, Minimize Single Point Failures

Cost/Affordability
- Unit and Life Cycle
Computational electromagnetics

In-situ antenna design & analysis

Application Examples:
- Body worn antennas
- Rotman lens
- Wafer level antenna
- Phased arrays with integrated MEMS devices
- Collision avoidance radar
- Metamaterials
CEM “Toolkit” requires expert users

- EM Picasso (MoM 2.5D) – modeling of planar antennas (e.g., patch arrays)
- XFDTD (FDTD) – broadband modeling of 3-D structures (e.g., spiral)
- HFSS (FEM) – modeling of 3-D structures (e.g., horn antennas)
- FEKO & GEMACS (3-D MoM/FMM)

Ground plane models required for most Army applications

In-situ antenna simulations – model the effects of structures, platforms, and the human body over lossy ground

- The radiation pattern of the antenna
- The in-situ antenna impedance (bandwidth)
- Co-site mitigation (multiple antennas or vehicles)
- EMI/EMC and RAD HAZ issues
- Low observables and signature management

HPC systems are required at high frequency
Antenna development for military applications is a collaborative process that involves DoD labs, universities and industry.

Antenna has to be designed with platform and environment in mind.

In-situ antenna design & analysis are essential to successful development.

New simulation tools are still needed for new frontiers, such as metamaterials and nano-designs.

Fully integrated, adaptive designs have been at the forefront of antenna research and development.

Wideband, low profile, high efficiency, polarization diversity and low cost are still requirements.
Phased Array RADAR at CERDEC
UHF building penetration radar

Operated stationary for MTD and moving for SAR
Antenna: Ultra wideband linear array of Vivaldi elements

- Lightweight, relatively low cost, ~2 x ½m
- Six active elements, two dummy elements, no grating lobes
- Single transmitter would be switched between two end elements
- Six coherent UHF digital receivers, one at each active element
- Total FOV 60° digitally beamformed to eight beams of 7.1°

MIMO-inspired ping-pong type transmitter and digital beamformer

- Creates an effective virtual receive aperture
- Improves azimuth accuracy performance equivalent to conventional array twice the width
- Allowed for reduced size/weight
- Eight simultaneously formed receive beams

Three layers of conductor: upper and lower flair together, middle flairs in opposite direction; layers separated with low dielectric foam

Naturally fed with stripline or coax or other unbalanced line

Very wide bandwidth achieved with scaled “standard” design but that resulted in undesirably large element

Single-element design required substantial additional modification when arrayed to remove resonance introduced by mutual coupling
Objective: Persistent FOPEN GMTI radar surveillance to deny dismounted troops the ability to maneuver under foliage

Description:
§ UHF GMTI/SAR radar to detect and track moving personnel and vehicles hidden or obscured by foliage.
§ System is designed for the A160 Hummingbird (helicopter UAV)

Capabilities:
§ Detect moving dismounts and vehicles under foliage
§ Synthetic Aperture Radar mode
§ Electronically steer beam to search a 90 degree sector
§ Real-time onboard processing

Status:
§ Completed FORESTER/Black Hawk testing
§ Completed FORESTER/ A160T testing
L-Band

Cylindrical Array

- Electronically scanned in azimuth – “Wullenweber” architecture
- Dual fixed receive beams in elevation

Dual receive elevation beams (each with delta azimuth)

Receive elevation beams formed with Blass Matrix
Linear array of six dipoles

Forms two simultaneous elevation receive beams for amplitude only monopulse

Forms single transmit sum beam

Dual output power amplifier module provides several stages of amplification
Array is comprised of 24 antenna columns (144 elements) arranged in a cylinder configuration. 8 columns used together to form a beam.
Multi-Mission Radar (MMR)

- **Ground based radar for**
 - Air Surveillance
 - Counter Battery
 - Fire Control
 - Air Traffic Control

- **S-Band**

- **Planar Array**
 - Element level T/R
 - Phase steering in azimuth and elevation (+/- 45 degrees azimuth and +/-33 degrees elevation)
 - Rotates 360 degrees mechanically at up to 30rpm
 - Analog beamforming
 - Single transmit Sum beam
 - Three stacked beams in elevation each with delta azimuth
MMR system with Radome removed

MMR Octapak laying against the array face

MMR Octapak
C-130 Transportable; Highly-Mobile
Q-36/37 Performance in Small Footprint
Soldier “Friendly” for Protection & Ergonomics
72-Hour Operation with Mission Essential Configuration
IFPC Compatible
Linked to AFATDS & FAADC2

Enhanced AN/TPQ-36 (EQ36)

- Detect, Classify, Track Incoming Projectiles Mortars, Artillery (Cannon), Rockets
- 90° and 360° Capable
- Emplacement – 5 Minutes, Displacement – 2 Minutes; Auto Levels and Self-Align
- Miltope Laptop Control - Remote Control Display Unit (1 KM Range)
Low-Risk Solution

Existing Radars

The Army’s Successful Solution

Highly Capable
- TPQ-36 and 37 Performance in a Small Footprint

- **Solid-State**
- **Electronic Steering 90° AZ, 65° EL**
- **Mechanical 360° Azimuth Rotator**
- **Flexible Radar Resource Management, Waveforms, and Processing**

Significantly Upgrades Army Counterfire Target Acquisition Capability

- **Range and Accuracy**
- **Operate in Severe Clutter**
- **High Probability of Location (>90%)**
- **Modern, Modular Design**
- **360° Counterfire**
- **HMMWV-Based**

Prototype Re-Use
- Radar System Design
- CTA Algorithm
- Antenna RF Architecture
- Digital Signal Processor Architecture

- **Antenna Structure Optimized for Producibility**
- **Platform Optimized for Ease of Emplacement**
- **Signal Processor Optimized for Maintainability and Ruggedization**
- **Automated Leveling**

MMR-ATO

- **Solid-State**
- **Electronic Steering 90º AZ. 65º EL**
- **Mechanical 360º Azimuth Rotator**

Flexible Radar Resource Management, Waveforms, and Processing

Operations Control Shelter

- **Interoperable with Army Fire Control Systems**

- **AN/TPQ-36**
- **AN/TPQ-37**

The Army’s EQ-36

Antenna Transceiver Group (ATG)

- **90° and 360° CTA**
- **Pedestal Electronics Easy To Access and Replace**
- **Antenna Group Levels Easily and Quickly Using Automated Leveling**
- **Automatic ATG Leveling**
Army Digital Array Radar Program
(Army DAR)

- Develop the technology and production building blocks for Digital Array Radars
- Develop a generic platform on which future advanced, low cost radars will be built
- Devise techniques for low cost integration of the active components with radiating panel
- Utilize efficient technologies to minimize power and thermal overhead
- Use modern digital transceiver technology for system for system-wide flexibility

Digital arrays offer significant improvements in the detection and tracking of challenging targets and overall radar system flexibility